ComputerVision_week_2_Wednesday_2023.pdf
ComputerVision_week_2_Thursday_2023.pdf
Projective geometry is an alternative algebraic representation of geometric objects and transformations.
Homogeneous coordinates are a system of coordinates used in projective geometry


original shape
Scaling
Each component multiplied by a scalar (uniform scaling: same scalar for each component)
$x'=ax\\ y'=by$
Matrix representation (euclidean):
$$ \begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} $$

Shear
Matrix representation (euclidean):
$$ \begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} 1 & a \\ b & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} $$

Rotation
Matrix representation (euclidean):
$$ \begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} $$

Translation
$x' = x + t_x$, $y'= y+t_y$
→ can’t be represented by a 2x2 matrix multiplication (because it’s not a linear transofrmation, the origin’s image is not the origin…)
But it can be with 3x3 matrix multiplication, using homogenous coordinates:
$$ \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} $$
